96 lines
3.0 KiB
Java
96 lines
3.0 KiB
Java
|
package Searches;
|
||
|
|
||
|
import static java.lang.String.format;
|
||
|
|
||
|
import java.util.Random;
|
||
|
import java.util.concurrent.ThreadLocalRandom;
|
||
|
import java.util.stream.IntStream;
|
||
|
|
||
|
/**
|
||
|
* The UpperBound method is used to return an index pointing to the first element in the range
|
||
|
* [first, last) which has a value greater than val, or the last index if no such element exists
|
||
|
* i.e. the index of the next smallest number just greater than that number. If there are multiple
|
||
|
* values that are equal to val it returns the index of the first such value.
|
||
|
*
|
||
|
* <p>This is an extension of BinarySearch.
|
||
|
*
|
||
|
* <p>Worst-case performance O(log n) Best-case performance O(1) Average performance O(log n)
|
||
|
* Worst-case space complexity O(1)
|
||
|
*
|
||
|
* @author Pratik Padalia (https://github.com/15pratik)
|
||
|
* @see SearchAlgorithm
|
||
|
* @see BinarySearch
|
||
|
*/
|
||
|
class UpperBound implements SearchAlgorithm {
|
||
|
|
||
|
// Driver Program
|
||
|
public static void main(String[] args) {
|
||
|
// Just generate data
|
||
|
Random r = ThreadLocalRandom.current();
|
||
|
|
||
|
int size = 100;
|
||
|
int maxElement = 100000;
|
||
|
|
||
|
Integer[] integers =
|
||
|
IntStream.generate(() -> r.nextInt(maxElement))
|
||
|
.limit(size)
|
||
|
.sorted()
|
||
|
.boxed()
|
||
|
.toArray(Integer[]::new);
|
||
|
|
||
|
// The element for which the upper bound is to be found
|
||
|
int val = integers[r.nextInt(size - 1)] + 1;
|
||
|
|
||
|
UpperBound search = new UpperBound();
|
||
|
int atIndex = search.find(integers, val);
|
||
|
|
||
|
System.out.println(
|
||
|
format(
|
||
|
"Val: %d. Upper Bound Found %d at index %d. An array length %d",
|
||
|
val, integers[atIndex], atIndex, size));
|
||
|
|
||
|
boolean toCheck = integers[atIndex] > val || integers[size - 1] < val;
|
||
|
System.out.println(
|
||
|
format(
|
||
|
"Upper Bound found at an index: %d. Is greater or max element: %b", atIndex, toCheck));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @param array is an array where the UpperBound value is to be found
|
||
|
* @param key is an element for which the UpperBound is to be found
|
||
|
* @param <T> is any comparable type
|
||
|
* @return index of the UpperBound element
|
||
|
*/
|
||
|
@Override
|
||
|
public <T extends Comparable<T>> int find(T[] array, T key) {
|
||
|
return search(array, key, 0, array.length - 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method implements the Generic Binary Search
|
||
|
*
|
||
|
* @param array The array to make the binary search
|
||
|
* @param key The number you are looking for
|
||
|
* @param left The lower bound
|
||
|
* @param right The upper bound
|
||
|
* @return the location of the key
|
||
|
*/
|
||
|
private <T extends Comparable<T>> int search(T[] array, T key, int left, int right) {
|
||
|
if (right <= left) {
|
||
|
return left;
|
||
|
}
|
||
|
|
||
|
// find median
|
||
|
int median = (left + right) >>> 1;
|
||
|
int comp = key.compareTo(array[median]);
|
||
|
|
||
|
if (comp < 0) {
|
||
|
// key is smaller, median position can be a possible solution
|
||
|
return search(array, key, left, median);
|
||
|
} else {
|
||
|
// key we are looking is greater, so we must look on the right of median position
|
||
|
return search(array, key, median + 1, right);
|
||
|
}
|
||
|
}
|
||
|
}
|