2020-08-16 19:58:48 +08:00
|
|
|
package Maths;
|
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
/** @see <a href="https://en.wikipedia.org/wiki/Combination">Combination</a> */
|
2020-08-16 19:58:48 +08:00
|
|
|
public class Combinations {
|
2020-10-24 18:23:28 +08:00
|
|
|
public static void main(String[] args) {
|
|
|
|
assert combinations(1, 1) == 1;
|
|
|
|
assert combinations(10, 5) == 252;
|
|
|
|
assert combinations(6, 3) == 20;
|
|
|
|
assert combinations(20, 5) == 15504;
|
2021-10-20 16:22:32 +08:00
|
|
|
|
|
|
|
// Since, 200 is a big number its factorial will go beyond limits of long even when 200C5 can be saved in a long
|
|
|
|
// variable. So below will fail
|
|
|
|
// assert combinations(200, 5) == 2535650040l;
|
|
|
|
|
|
|
|
assert combinationsOptimized(100, 0) == 1;
|
|
|
|
assert combinationsOptimized(1, 1) == 1;
|
|
|
|
assert combinationsOptimized(10, 5) == 252;
|
|
|
|
assert combinationsOptimized(6, 3) == 20;
|
|
|
|
assert combinationsOptimized(20, 5) == 15504;
|
|
|
|
assert combinationsOptimized(200, 5) == 2535650040l;
|
2020-10-24 18:23:28 +08:00
|
|
|
}
|
2020-08-16 19:58:48 +08:00
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
/**
|
|
|
|
* Calculate of factorial
|
|
|
|
*
|
|
|
|
* @param n the number
|
|
|
|
* @return factorial of given number
|
|
|
|
*/
|
|
|
|
public static long factorial(int n) {
|
|
|
|
if (n < 0) {
|
|
|
|
throw new IllegalArgumentException("number is negative");
|
2020-08-16 19:58:48 +08:00
|
|
|
}
|
2020-10-24 18:23:28 +08:00
|
|
|
return n == 0 || n == 1 ? 1 : n * factorial(n - 1);
|
|
|
|
}
|
2020-08-16 19:58:48 +08:00
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
/**
|
|
|
|
* Calculate combinations
|
|
|
|
*
|
|
|
|
* @param n first number
|
|
|
|
* @param k second number
|
|
|
|
* @return combinations of given {@code n} and {@code k}
|
|
|
|
*/
|
|
|
|
public static long combinations(int n, int k) {
|
|
|
|
return factorial(n) / (factorial(k) * factorial(n - k));
|
|
|
|
}
|
2021-10-20 16:22:32 +08:00
|
|
|
|
|
|
|
/**
|
|
|
|
* The above method can exceed limit of long (overflow) when factorial(n) is larger than limits of long variable.
|
|
|
|
* Thus even if nCk is within range of long variable above reason can lead to incorrect result.
|
|
|
|
* This is an optimized version of computing combinations.
|
|
|
|
* Observations:
|
|
|
|
* nC(k + 1) = (n - k) * nCk / (k + 1)
|
|
|
|
* We know the value of nCk when k = 1 which is nCk = n
|
|
|
|
* Using this base value and above formula we can compute the next term nC(k+1)
|
|
|
|
* @param n
|
|
|
|
* @param k
|
|
|
|
* @return nCk
|
|
|
|
*/
|
|
|
|
public static long combinationsOptimized(int n, int k) {
|
|
|
|
if (n < 0 || k < 0) {
|
|
|
|
throw new IllegalArgumentException("n or k can't be negative");
|
|
|
|
}
|
|
|
|
if (n < k) {
|
|
|
|
throw new IllegalArgumentException("n can't be smaller than k");
|
|
|
|
}
|
|
|
|
// nC0 is always 1
|
|
|
|
long solution = 1;
|
|
|
|
for(int i = 0; i < k; i++) {
|
|
|
|
long next = (n - i) * solution / (i + 1);
|
|
|
|
solution = next;
|
|
|
|
}
|
|
|
|
return solution;
|
|
|
|
}
|
2020-08-16 19:58:48 +08:00
|
|
|
}
|