Fix: 2618: [Enhancement] Combinations (#2625)
Co-authored-by: Amit Kumar <akumar@indeed.com>
This commit is contained in:
parent
4a2b190160
commit
3028cf58d8
@ -7,6 +7,17 @@ public class Combinations {
|
||||
assert combinations(10, 5) == 252;
|
||||
assert combinations(6, 3) == 20;
|
||||
assert combinations(20, 5) == 15504;
|
||||
|
||||
// Since, 200 is a big number its factorial will go beyond limits of long even when 200C5 can be saved in a long
|
||||
// variable. So below will fail
|
||||
// assert combinations(200, 5) == 2535650040l;
|
||||
|
||||
assert combinationsOptimized(100, 0) == 1;
|
||||
assert combinationsOptimized(1, 1) == 1;
|
||||
assert combinationsOptimized(10, 5) == 252;
|
||||
assert combinationsOptimized(6, 3) == 20;
|
||||
assert combinationsOptimized(20, 5) == 15504;
|
||||
assert combinationsOptimized(200, 5) == 2535650040l;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -32,4 +43,32 @@ public class Combinations {
|
||||
public static long combinations(int n, int k) {
|
||||
return factorial(n) / (factorial(k) * factorial(n - k));
|
||||
}
|
||||
|
||||
/**
|
||||
* The above method can exceed limit of long (overflow) when factorial(n) is larger than limits of long variable.
|
||||
* Thus even if nCk is within range of long variable above reason can lead to incorrect result.
|
||||
* This is an optimized version of computing combinations.
|
||||
* Observations:
|
||||
* nC(k + 1) = (n - k) * nCk / (k + 1)
|
||||
* We know the value of nCk when k = 1 which is nCk = n
|
||||
* Using this base value and above formula we can compute the next term nC(k+1)
|
||||
* @param n
|
||||
* @param k
|
||||
* @return nCk
|
||||
*/
|
||||
public static long combinationsOptimized(int n, int k) {
|
||||
if (n < 0 || k < 0) {
|
||||
throw new IllegalArgumentException("n or k can't be negative");
|
||||
}
|
||||
if (n < k) {
|
||||
throw new IllegalArgumentException("n can't be smaller than k");
|
||||
}
|
||||
// nC0 is always 1
|
||||
long solution = 1;
|
||||
for(int i = 0; i < k; i++) {
|
||||
long next = (n - i) * solution / (i + 1);
|
||||
solution = next;
|
||||
}
|
||||
return solution;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user