Add knapsack problem (#2330)
This commit is contained in:
parent
cccb7be7d8
commit
e6fb81d1bb
43
DynamicProgramming/BruteForceKnapsack.java
Normal file
43
DynamicProgramming/BruteForceKnapsack.java
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
package DynamicProgramming;
|
||||||
|
|
||||||
|
/* A Naive recursive implementation
|
||||||
|
of 0-1 Knapsack problem */
|
||||||
|
public class BruteForceKnapsack {
|
||||||
|
|
||||||
|
// A utility function that returns
|
||||||
|
// maximum of two integers
|
||||||
|
static int max(int a, int b) {
|
||||||
|
return (a > b) ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Returns the maximum value that
|
||||||
|
// can be put in a knapsack of
|
||||||
|
// capacity W
|
||||||
|
static int knapSack(int W, int wt[], int val[], int n) {
|
||||||
|
// Base Case
|
||||||
|
if (n == 0 || W == 0)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
// If weight of the nth item is
|
||||||
|
// more than Knapsack capacity W,
|
||||||
|
// then this item cannot be included
|
||||||
|
// in the optimal solution
|
||||||
|
if (wt[n - 1] > W)
|
||||||
|
return knapSack(W, wt, val, n - 1);
|
||||||
|
|
||||||
|
// Return the maximum of two cases:
|
||||||
|
// (1) nth item included
|
||||||
|
// (2) not included
|
||||||
|
else
|
||||||
|
return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Driver code
|
||||||
|
public static void main(String args[]) {
|
||||||
|
int val[] = new int[] { 60, 100, 120 };
|
||||||
|
int wt[] = new int[] { 10, 20, 30 };
|
||||||
|
int W = 50;
|
||||||
|
int n = val.length;
|
||||||
|
System.out.println(knapSack(W, wt, val, n));
|
||||||
|
}
|
||||||
|
}
|
39
DynamicProgramming/DyanamicProgrammingKnapsack.java
Normal file
39
DynamicProgramming/DyanamicProgrammingKnapsack.java
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
package DynamicProgramming;
|
||||||
|
|
||||||
|
// A Dynamic Programming based solution
|
||||||
|
// for 0-1 Knapsack problem
|
||||||
|
public class DyanamicProgrammingKnapsack {
|
||||||
|
static int max(int a, int b) {
|
||||||
|
return (a > b) ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Returns the maximum value that can
|
||||||
|
// be put in a knapsack of capacity W
|
||||||
|
static int knapSack(int W, int wt[], int val[], int n) {
|
||||||
|
int i, w;
|
||||||
|
int K[][] = new int[n + 1][W + 1];
|
||||||
|
|
||||||
|
// Build table K[][] in bottom up manner
|
||||||
|
for (i = 0; i <= n; i++) {
|
||||||
|
for (w = 0; w <= W; w++) {
|
||||||
|
if (i == 0 || w == 0)
|
||||||
|
K[i][w] = 0;
|
||||||
|
else if (wt[i - 1] <= w)
|
||||||
|
K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
||||||
|
else
|
||||||
|
K[i][w] = K[i - 1][w];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return K[n][W];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Driver code
|
||||||
|
public static void main(String args[]) {
|
||||||
|
int val[] = new int[] { 60, 100, 120 };
|
||||||
|
int wt[] = new int[] { 10, 20, 30 };
|
||||||
|
int W = 50;
|
||||||
|
int n = val.length;
|
||||||
|
System.out.println(knapSack(W, wt, val, n));
|
||||||
|
}
|
||||||
|
}
|
59
DynamicProgramming/MemoizationTechniqueKnapsack.java
Normal file
59
DynamicProgramming/MemoizationTechniqueKnapsack.java
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
package DynamicProgramming;
|
||||||
|
// Here is the top-down approach of
|
||||||
|
// dynamic programming
|
||||||
|
public class MemoizationTechniqueKnapsack {
|
||||||
|
|
||||||
|
//A utility function that returns
|
||||||
|
//maximum of two integers
|
||||||
|
static int max(int a, int b) {
|
||||||
|
return (a > b) ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Returns the value of maximum profit
|
||||||
|
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
||||||
|
|
||||||
|
// Base condition
|
||||||
|
if (n == 0 || W == 0)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
if (dp[n][W] != -1)
|
||||||
|
return dp[n][W];
|
||||||
|
|
||||||
|
if (wt[n - 1] > W)
|
||||||
|
|
||||||
|
// Store the value of function call
|
||||||
|
// stack in table before return
|
||||||
|
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
||||||
|
|
||||||
|
else
|
||||||
|
|
||||||
|
// Return value of table after storing
|
||||||
|
return dp[n][W] = max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
||||||
|
knapSackRec(W, wt, val, n - 1, dp));
|
||||||
|
}
|
||||||
|
|
||||||
|
static int knapSack(int W, int wt[], int val[], int N) {
|
||||||
|
|
||||||
|
// Declare the table dynamically
|
||||||
|
int dp[][] = new int[N + 1][W + 1];
|
||||||
|
|
||||||
|
// Loop to initially filled the
|
||||||
|
// table with -1
|
||||||
|
for (int i = 0; i < N + 1; i++)
|
||||||
|
for (int j = 0; j < W + 1; j++)
|
||||||
|
dp[i][j] = -1;
|
||||||
|
|
||||||
|
return knapSackRec(W, wt, val, N, dp);
|
||||||
|
}
|
||||||
|
|
||||||
|
//Driver Code
|
||||||
|
public static void main(String[] args) {
|
||||||
|
int val[] = { 60, 100, 120 };
|
||||||
|
int wt[] = { 10, 20, 30 };
|
||||||
|
|
||||||
|
int W = 50;
|
||||||
|
int N = val.length;
|
||||||
|
|
||||||
|
System.out.println(knapSack(W, wt, val, N));
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user