mirror of
https://gitee.com/TheAlgorithms/LeetCodeAnimation.git
synced 2024-12-06 15:19:44 +08:00
102 lines
2.4 KiB
Java
102 lines
2.4 KiB
Java
|
## **LeetCode 第 70 号问题:爬楼梯**
|
|||
|
|
|||
|
> 本文首发于公众号「图解面试算法」,是 [图解 LeetCode ](<https://github.com/MisterBooo/LeetCodeAnimation>) 系列文章之一.
|
|||
|
>
|
|||
|
> 同步博客:https://www.algomooc.com
|
|||
|
|
|||
|
题目来源于 LeetCode 上第 70 号问题:爬楼梯。题目难度为 Easy。
|
|||
|
|
|||
|
### 题目描述
|
|||
|
|
|||
|
假设你正在爬楼梯。需要 `n` 阶你才能到达楼顶。
|
|||
|
|
|||
|
每次你可以爬 `1` 或 `2` 个台阶。你有多少种不同的方法可以爬到楼顶呢?
|
|||
|
|
|||
|
**注意:给定 n 是一个正整数。**
|
|||
|
|
|||
|
### 示例1
|
|||
|
|
|||
|
> 输入: 2
|
|||
|
>
|
|||
|
> 解释: 有两种方法可以爬到楼顶。
|
|||
|
>
|
|||
|
> 1. 1 阶 + 1 阶
|
|||
|
>
|
|||
|
> 2. 2 阶
|
|||
|
|
|||
|
### 题目解析
|
|||
|
|
|||
|
试着倒推想一下,就能发现这个问题可以被分解为一些包含最优子结构的子问题,它的最优解可以从其子问题
|
|||
|
的最优解来有效地构建,因此我们可以使用`动态规划`解决这个问题.
|
|||
|
|
|||
|
第 `i` 阶可以由以下两种方法得到:
|
|||
|
|
|||
|
在第 `(i - 1)` 阶后向上爬 1 阶。
|
|||
|
|
|||
|
在第 `(i - 2)` 阶后向上爬 2 阶
|
|||
|
|
|||
|
所以到达第 `i` 阶的方法总数就是到第 `(i - 1)` 阶和第 `(i - 2)` 阶的方法数之和。
|
|||
|
|
|||
|
`dp[i]dp[i]` 表示能到达第 `i` 阶的方法总数,那么DP推导公式就是:
|
|||
|
|
|||
|
> $$
|
|||
|
> dp[i] = dp[i − 1] + dp[i − 2]
|
|||
|
> $$
|
|||
|
|
|||
|
|
|||
|
|
|||
|
### 动画理解
|
|||
|
|
|||
|
<img src="../Animation/Animation.gif" alt="Animation" style="zoom:150%;" />
|
|||
|
|
|||
|
### 参考代码
|
|||
|
|
|||
|
```javascript
|
|||
|
/**
|
|||
|
* JavaScript 描述
|
|||
|
*/
|
|||
|
var climbStairs = function(n) {
|
|||
|
let temp = new Array(n+1);
|
|||
|
temp[1] = 1;
|
|||
|
temp[2] = 2;
|
|||
|
for (let i = 3; i < temp.length; i++) {
|
|||
|
temp[i] = temp[i-1] + temp[i-2];
|
|||
|
}
|
|||
|
return temp[n];
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
#### 复杂度分析
|
|||
|
|
|||
|
- 时间复杂度:`O(n)`,单循环到 n。
|
|||
|
- 空间复杂度:`O(n)`,dpdp 数组用了 n 的空间。
|
|||
|
|
|||
|
### 进一步优化
|
|||
|
|
|||
|
根据推导公式不难发现,我们要求的结果就是数组的最后一项,而最后一项又是前面数值叠加起来的,那么我们只需要两个变量保存 `i - 1` 和 `i - 2` 的值就可以了.
|
|||
|
|
|||
|
```javascript
|
|||
|
/**
|
|||
|
* JavaScript 描述
|
|||
|
*/
|
|||
|
var climbStairs = function(n) {
|
|||
|
if (n == 1) {
|
|||
|
return 1;
|
|||
|
}
|
|||
|
let first = 1,
|
|||
|
second = 2;
|
|||
|
for (let i = 3; i <= n; i++) {
|
|||
|
let third = first + second;
|
|||
|
first = second;
|
|||
|
second = third;
|
|||
|
}
|
|||
|
return second;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
#### 复杂度分析
|
|||
|
|
|||
|
- 时间复杂度:O(n),单循环到 n。
|
|||
|
- 空间复杂度:O(1),用到了常量的空间。
|
|||
|
|
|||
|
![qrcode](../../Pictures/qrcode.jpg)
|