Statistical-Learning-Method.../Page_Rank/Page_Rank.ipynb

171 lines
4.7 KiB
Plaintext
Raw Normal View History

2021-01-26 17:09:38 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### PageRank算法\n",
"以下图所示的有向图为例计算每个结点的PR\n",
"<img style=\"float: center;\" src=\"directed_graph.png\" width=\"20%\">"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"\n",
"n = 7 #有向图中一共有7个节点\n",
"d = 0.85 #阻尼因子根据经验值确定,这里我们随意给一个值\n",
"M = np.array([[0, 1/4, 1/3, 0, 0, 1/2, 0],\n",
" [1/4, 0, 0, 1/5, 0, 0, 0],\n",
" [0, 1/4, 0, 1/5, 1/4, 0, 0],\n",
" [0, 0, 1/3, 0, 1/4, 0, 0],\n",
" [1/4, 0, 0, 1/5, 0, 0, 0],\n",
" [1/4, 1/4, 0, 1/5, 1/4, 0, 0],\n",
" [1/4, 1/4, 1/3, 1/5, 1/4, 1/2, 0]]) #根据有向图中各节点的连接情况写出转移矩阵\n",
"R0 = np.full((7, 1), 1/7) #设置初始向量R0R0是一个7*1的列向量因为有7个节点我们把R0的每一个值都设为1/7\n",
"eps = 0.000001 #设置计算精度"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. PageRank的迭代算法"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"t = 0 #用来累计迭代次数\n",
"R = R0 #对R向量进行初始化\n",
"judge = False #用来判断是否继续迭代\n",
"while not judge:\n",
" next_R = d * np.matmul(M, R) + (1 - d) / n * np.ones((7, 1)) #计算新的R向量\n",
" diff = np.linalg.norm(R - next_R) #计算新的R向量与之前的R向量之间的距离这里采用的是欧氏距离\n",
" if diff < eps: #若两向量之间的距离足够小\n",
" judge = True #则停止迭代\n",
" R = next_R #更新R向量\n",
" t += 1 #迭代次数加一\n",
"R = R / np.sum(R) #对R向量进行规范化保证其总和为1表示各节点的概率分布"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"迭代次数: 24\n",
"PageRank: \n",
" [[0.17030305]\n",
" [0.10568394]\n",
" [0.11441021]\n",
" [0.10629792]\n",
" [0.10568394]\n",
" [0.15059975]\n",
" [0.24702119]]\n"
]
}
],
"source": [
"print('迭代次数:', t)\n",
"print('PageRank: \\n', R)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. PageRank的幂法"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"t = 0 #用来累计迭代次数\n",
"x = R0 #对x向量进行初始化\n",
"judge = False #用来判断是否继续迭代\n",
"A = d * M + (1 - d) / n * np.eye(n) #计算A矩阵其中np.eye(n)用来创建n阶单位阵E\n",
"while not judge:\n",
" next_y = np.matmul(A, x) #计算新的y向量\n",
" next_x = next_y / np.linalg.norm(next_y) #对新的y向量规范化得到新的x向量\n",
" diff = np.linalg.norm(x - next_x) #计算新的x向量与之前的x向量之间的距离这里采用的是欧氏距离\n",
" if diff < eps: #若两向量之间的距离足够小\n",
" judge = True #则停止迭代\n",
" R = x #得到R向量\n",
" x = next_x #更新x向量\n",
" t += 1 #迭代次数加一\n",
"R = R / np.sum(R) #对R向量进行规范化保证其总和为1表示各节点的概率分布"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"迭代次数: 25\n",
"PageRank: \n",
" [[0.18860772]\n",
" [0.09038084]\n",
" [0.0875305 ]\n",
" [0.07523049]\n",
" [0.09038084]\n",
" [0.15604764]\n",
" [0.31182196]]\n"
]
}
],
"source": [
"print('迭代次数:', t)\n",
"print('PageRank: \\n', R)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}